Answer:
E = 1.50 ×
V/m
Explanation:
given data
B = 0.50 T
solution
we know that energy density by the magnetic field is express as
...............1
and
energy density due to electric filed is
...............2
and here 
so that
E =
...................3
put here value and we get
E = 3 ×
× 0.50
E = 1.50 ×
V/m
Answer:
<h2>velocity = 12.73 km/hr.</h2><h2 />
Explanation:
velocity = distance / time
=<u> 28 km </u>
2.2 hr
= 12.73 km/hr.
Answer:
Similarity: >>Time is independent variable and such is on the x-axis. ... >>Distance time graph tells you how much distance you have travelled, while velocity time graph tells you your acceleration. The difference between them is that the velocity-time graph reveals the speed of an object (and whether it is slowing down or speeding up), while the position-time graph describes the motion of an object over a period of time.
Explanation:
We want to find how much momentum the dumbbell has at the moment it strikes the floor. Let's use this kinematics equation:
Vf² = Vi² + 2ad
Vf is the final velocity of the dumbbell, Vi is its initial velocity, a is its acceleration, and d is the height of its fall.
Given values:
Vi = 0m/s (dumbbell starts falling from rest)
a = 10m/s² (we'll treat downward motion as positive, this doesn't affect the result as long as we keep this in mind)
d = 80×10⁻²m
Plug in the values and solve for Vf:
Vf² = 2(10)(80×10⁻²)
Vf = ±4m/s
Reject the negative root.
Vf = 4m/s
The momentum of the dumbbell is given by:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
m = 10kg
v = 4m/s (from previous calculation)
Plug in the values and solve for p:
p = 10(4)
p = 40kg×m/s
Think of a wedge as something you put in between objects, so it is a separates objects