Answer:

Now when it will reach at point B then its normal force is just equal to ZERO


Explanation:
Since we need to cross both the loops so least speed at the bottom must be

also by energy conservation this is gained by initial potential energy


so we will have

now we have

here we have
R = 7.5 m
so we have


Now when it will reach at point B then its normal force is just equal to ZERO

now when it reach point C then the speed will be
![mgh - mg(2R_c) = \frac{1}{2]mv_c^2](https://tex.z-dn.net/?f=mgh%20-%20mg%282R_c%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Dmv_c%5E2)


now normal force at point C is given as



Answer:
All adjustments in issue include changes in energy. Energy is either delivered or consumed. The energy is often in the form of heat, however it might be in the form of sound or light.
Explanation:
this is in my own words btw:)
Horizontal speed = 24.0 m/s
height of the cliff = 51.0 m
For the initial vertical speed will are considering the vertical component. Therefore,
Since the student fires the canonical ball at the maximum height of 51 m, the initial vertical velocity will be zero. This means

let's find how long the ball remained in the air.
![\begin{gathered} 0=51-\frac{1}{2}(9.8)t^2 \\ 4.9t^2=51 \\ t^2=\frac{51}{4.9} \\ t^2=10.4081632653 \\ t=\sqrt[]{10.4081632653} \\ t=3.22 \\ t=3.22\text{ s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%200%3D51-%5Cfrac%7B1%7D%7B2%7D%289.8%29t%5E2%20%5C%5C%204.9t%5E2%3D51%20%5C%5C%20t%5E2%3D%5Cfrac%7B51%7D%7B4.9%7D%20%5C%5C%20t%5E2%3D10.4081632653%20%5C%5C%20t%3D%5Csqrt%5B%5D%7B10.4081632653%7D%20%5C%5C%20t%3D3.22%20%5C%5C%20t%3D3.22%5Ctext%7B%20s%7D%20%5Cend%7Bgathered%7D)
Finally, let's find the how far from the base of the building the ball landed(horizontal distance)
Answer:
θ = 45º
Explanation:
The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz
I = I₀ cos² θ
in the problem they ask us
I = ½ I₀
let's look for the angles
½ I₀ = I₀ cos² θ
cos θ = √ ½ = 0.707
θ = cos 0.707
θ = 45º
Here are the answers to the
following questions:
1. spiral
2. spiral
3. rapidly spinning
protogalactic clouds
I am hoping that these answers
have satisfied your queries and it will be able to help you in your endeavors, and
if you would like, feel free to ask another question.