It's total kinetic energy
Since force = mass X acceleration, then the force he excerts on the earth (aka his weight) equals his mass times the force of gravity.
Therefore
W = (66 kg) X (9.8 m/ss)
W = 646.8 kgm/ss
kg m/ss are also known as Newtons, so your answer is...
646.8 N
Answer:
=99.07nm
Explanation:
minimum thickness
2nd = (m - 1/2)λ
d = (m - 1/2)(λ/2n)
refractive index of the thin film, n = 1.34
minimum thickness m = 1
light wavelength λ = 531nm
d = (1 - 1/2) (531 / (2)(1.34)
d = 531/5.36
= 99.07nm
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is

Answer:
304.86 metres
Explanation:
The x and y cordinates are
and
respectively
The horizontal distance travelled, 
Making t the subject, 
Since
, we substitute t with the above and obtain

Making d the subject we obtain


d=304.8584
d=304.86m