Answer:
![125\sqrt[4]{8}](https://tex.z-dn.net/?f=125%5Csqrt%5B4%5D%7B8%7D)
Explanation:
A number of the form

can be re-written in the radical form as follows:
![\sqrt[n]{a^m}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D)
In this problem, we have:
a = 1,250
m = 3
n = 4
So, if we apply the formula, we get
![1,250^{\frac{3}{4}}=\sqrt[4]{(1,250)^3}](https://tex.z-dn.net/?f=1%2C250%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B%281%2C250%29%5E3%7D)
Then, we can rewrite 1250 as

So we can rewrite the expression as
![=\sqrt[4]{(2\cdot 5^4)^3}=5^3 \sqrt[4]{2^3}=125\sqrt[4]{8}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B4%5D%7B%282%5Ccdot%205%5E4%29%5E3%7D%3D5%5E3%20%5Csqrt%5B4%5D%7B2%5E3%7D%3D125%5Csqrt%5B4%5D%7B8%7D)
C. Melt 1g if solid into liquid.
Answer:
When the parachute opens, the air resistance increases. The skydiver slows down until a new, lower terminal velocity is reached.
Answer:
Explanation:
Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of conservation of energy can be stated as follows: Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total remains the same.
Primarily to survey and map the landscape of Mars for future missions. It also takes core samples and searches for water underground. This is important for many reasons, but most obviously for the upcoming missions to mars and the colonies that follow. Hope this helps?