1.59moles
Explanation:
Mass of CaO = 89.23g
Unknown
Number of moles = ?
Solution:
The mole is a unit of measurement in chemistry used to delineate the number of particles an atom contains.
A mole of a substance contains the avogadro's number of particles.
Number of moles = 
Molar mass of CaO = 40 + 16 = 56g/mol
Number of moles =
= 1.59moles
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
<h3><u>Answer;</u></h3>
They are made up of elements.
<h3><u>Explanation;</u></h3>
- An atom is the smallest particle of matter that still retains the property of the element.
- Two or more atoms combine to form elements or compounds. Elements are formed by two or more similar atoms, while compounds are formed by two or more different elements.
- Atoms are made up of subatomic particles; protons, electrons and neutrons. Electrons are negatively charged, protons are positively charged while neutrons have no charge.
Answer : All of the above are valid expressions of the reaction rate.
Explanation :
The given rate of reaction is,

The expression for rate of reaction for the reactant :
![\text{Rate of disappearance of }NH_3=-\frac{1}{4}\times \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNH_3%3D-%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }O_2=-\frac{1}{7}\times \frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DO_2%3D-%5Cfrac%7B1%7D%7B7%7D%5Ctimes%20%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The expression for rate of reaction for the product :
![\text{Rate of formation of }NO_2=+\frac{1}{4}\times \frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DNO_2%3D%2B%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{6}\times \frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
From this we conclude that, all the options are correct.
Answer:
1.395J/g°C
Explanation:
The following were obtained from the question:
Q = 6527J
M = 312g
ΔT = 15°C
C =?
Q = MCΔT
C = Q/MΔT
C = 6527/(312 x 15)
C = 1.395J/g°C
The specific heat capacity of the substance is 1.395J/g°C
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)