1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
7

If you can help please help ​

Mathematics
1 answer:
kolbaska11 [484]3 years ago
7 0
The correct is the second choice
You might be interested in
Ann is adding water to a swimming pool at a constant rate. The table below shows the amount of water in the pool after different
N76 [4]

Answer:

(a)  As time increases, the amount of water in the pool increases.

     11 gallons per minute

(b)  65 gallons

Step-by-step explanation:

From inspection of the table, we can see that <u>as time increases, the amount of water in the pool increases</u>.

We are told that Ann adds water at a constant rate.  Therefore, this can be modeled as a linear function.  

The rate at which the water is increasing is the <em>rate of change</em> (which is also the <em>slope </em>of a linear function).

Choose 2 ordered pairs from the table:

\textsf{let}\:(x_1,y_1)=(8, 153)

\textsf{let}\:(x_2,y_2)=(12,197)

Input these into the slope formula:

\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{197-153}{12-8}=\dfrac{44}{4}=11

Therefore, the rate at which the water in the pool is increasing is:

<u>11 gallons per minute</u>

To find the amount of water that was already in the pool when Ann started adding water, we need to create a linear equation using the found slope and one of the ordered pairs with the point-slope formula:

y-y_1=m(x-x_1)

\implies y-153=11(x-8)

\implies y-153=11x-88

\implies y=11x-88+153

\implies y=11x+65

When Ann had added no water, x = 0.  Therefore,

y=11(0)+65

y=65

So there was <u>65 gallons</u> of water in the pool before Ann starting adding water.

3 0
2 years ago
Read 2 more answers
19 dollar fortnite card who wants it and yes i am giving it away.
V125BC [204]
NOO MOREEE FORTNITEEEEE
5 0
3 years ago
Read 2 more answers
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
Solve for x<br> Solve for x<br> Solve for x<br> Solve for x
spin [16.1K]
82+2x=180
2x=98
x=49
answer is x=49
3 0
3 years ago
Read 2 more answers
What conclusion can you make about you negative number raised to an odd power
Ahat [919]
The answer is negative
7 0
3 years ago
Other questions:
  • What value of x will make this proportion true 14/x=1/2?
    9·2 answers
  • Factorize completely:<br> 5 - 45/a^2
    8·1 answer
  • Write the definition of a function minmax that has five parameters. the first three parameters are integers. the last two are se
    12·1 answer
  • Angelo wants to buy a laptop and an android phone to be used in his online class. He paid a total of Php 24, 200.00 for both gad
    13·1 answer
  • PLEASE HELP, I DONT UNDERSTAND THIS.....Michael is laying carpet in a perfectly rectangular hall. The area of the hall is 240 sq
    14·2 answers
  • (X+h)^3 + (x+h)-(x^3+x)
    7·1 answer
  • Classify this figure in as many ways as possible
    11·1 answer
  • What is the greatest common factor?
    14·1 answer
  • Any five people on a committee of nine can decide for the committee. How many groups of five people are there?
    12·2 answers
  • The weather man predicted there would be 16 inches of snowfall. When measures, there was only 14 inches of snowfall. What percen
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!