Explanation:
To balance the reactions given, we must understand that the principle to follow is the law of conservation of matter.
Based on this premise, the number of moles of species on the reactant and product side must be the same;
Li + Br₂ → LiBr
Put a,b and c as the coefficient of each species
aLi + bBr₂ → cLiBr
balancing Li;
a = c
balancing Br;
2b = c
let a = 1;
c = 1
b =
or a = 2, b = 1 , c = 2
2Li + Br₂ → 2LiBr
P + Cl₂ → PCl₃
Using the same method;
aP + bCl₂ → cPCl₃
balancing P;
a = c
balancing Cl;
2b = 3c
let a = 1;
c = 1
b =
or
a = 2, b = 3, c = 2
2P + 3Cl₂ → 2PCl₃
iii,
H₂ + SO₂ → H₂S + H₂O
use coefficients a,b,c and d;
aH₂ + bSO₂ → cH₂S + dH₂O
balancing H;
2a = 2c + 2d
balancing S;
b = c
balancing O
2b = d
let b = 1,
c = 1
d = 2
a = 3
3H₂ + SO₂ → H₂S + 2H₂O
Carbon dioxide dissolves faster
Answer:
a. 21.7824 g
b. 0.2362 g
c. 31.5273 g
Please see the answers in the picture attached below.
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
The initial volume is 116.65 mL
<u>Explanation:</u>
<u />
Given:
Temperature, T₁ = 22°C
T₂ = 86°C
Volume, V₂ = 456 m
V₁ = ?
According to Charle's law:

Substituting the values:

Therefore, the initial volume is 116.65 mL