Answer:
Distillation will generate the most cyclohexene.
Explanation:
Let us assume following attached reaction for the synthesis of cyclohexene from cyclohexanol which attains equilibrium after certain time.
As shown in figure the cyclohexanol upon treatment with phosphoric acid undergoes dehydration reaction (removal of water) and produces cyclohexene. On the other hand cyclohexene reacts with water (hydration reaction) and produces cyclohexanol.
Now, if this reaction is allowed in a single flask it will attain equilibrium and will not generate the cyclohexene in high quantity. On the other hand if we apply <em>Le Chatelier's principle</em> ( <u><em>removal of product moves the equilibrium in right direction</em></u>) and distillate cyclohexene (boiling the cyclohexene to convert it into vapors and then collect it after condensation) will move the reaction in forward direction and will allow us to generate cyclohexene in high amounts.
Add 7 water atom to the right hand side to adjust the quantity of oxygen. Increase Cr(+3) by two to adjust the quantity of Cr. Duplicate Cl-by two to adjust the quantity of chlorine molecules.
Cr2O7[2-](aq) +2 Cl[-](aq) < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
Presently adjust that charges.
you have - 4 charges on the left hand side, while +18 charges on the right hand side, there for include 14H+ the left hand side to adjust the charges
Cr2O7[2-](aq) +2 Cl[-](aq)+14H+ < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
take note of that the oxidation number of hydrogen in water is +1
c. x-rays
My answer is that x-rays or gamma rays have the greatest (or highest) frequency waves.
The will not affect the wind. When it is windy the wind turns a turbine. Once the wind has gone through the turbine it is just normal wind, none of the wind is lost when this happened
a. t=0.553 s
b. vox(horizontal speed) = 3.62 m/s
<h3>Further explanation</h3>
Given
h = 1.5 m
x = 2 m
Required
a. time
b. vo=initial speed
Solution
Free fall motion
a. h = 1/2 gt²(vertical motion=h=voyt+1/2gt²⇒voy = 0)

t = √2h/g
t = √2.1.5/9.8
t=0.553 s
b. x=vox.t(horizontal motion)

vox=x/t
vox=2/0.553
vox=3.62 m/s