Answer:
222.5 Gpa
Explanation:
From definition of engineering stress, 
where F is applied force and A is original area
Also, engineering strain,
where l is original area and
is elongation
We also know that Hooke's law states that 
Since A=20 mm* 20 mm= 0.02 m*0.02 m
F= 89000 N
l= 100 mm= 0.1 m

By substitution we obtain

Answer:
the pressure gradient in the x direction = -15.48Pa/m
Explanation:
- The concept of partial differentiation was used in the determination of the expression for u and v.
- each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.
Answer:
Coiled tubing is often used to carry out operations similar to wire lining.
Answer:

Explanation:
Reynolds number:
Reynolds number describe the type of flow.If Reynolds number is too high then flow is called turbulent flow and Reynolds is low then flow is called laminar flow .
Reynolds number is a dimensionless number.Reynolds number given is the ratio of inertia force to the viscous force.

For plate can be given as

Where ρ is the density of fluid , v is the average velocity of fluid and μ is the dynamic viscosity of fluid.
Flow on plate is a external flow .The values of Reynolds number for different flow given as


Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes