Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft
Answer:
[a]. 0.49.
[2]. 0.536
[c]. 4.15 kmol; 5.84 kmol.
Explanation:
Without mincing words let's dive straight into the solution to the question above.
[a].
The initial external reflux ratio, LD that must be used = [(0.85 - 0.57)/ 0.85 - 0]/ [ 1 - (0.85 - 0.57)/ 0.85 - 0].
The initial external reflux ratio, LD that must be used = 0.329/ 1- 0.329 = 0.49.
[b].
The final external reflux ratio that must be used = [ 0.85 - 0.13/ 0.85 - 0]/ [ 1 - 0.85 - 0.13/ 0.85 - 0].
Hence, the final external reflux ratio that must be used =0.847/ 1 - 0.847 = 5.536.
[c].
The amount of distillate product that is withdrawn:
4 = 0.85 H(t) + 0.8 - 0.08.
H(t) = 4.15 kmol, and the value of Wfinal = 5.84 kmol.
Answer:
The main gases responsible for the greenhouse effect include carbon dioxide, methane, nitrous oxide, and water vapor which all occur naturally, and fluorinated gases which are synthetic.
Answer:
1st value = 1.828 * 10 ^9 gm/m^2 ------- 10th value = 7.312 * 10^9 gm/m^2
Explanation:
initial load ( Wp) = 200 g
W1 ( value by which load values increase ) = 100 g
Ten different beam loading values :
Wp + w1 = 300g ----- p1
Wp + 2W1 = 400g ---- p2
Wp + 3W1 = 500g ----- p3 ----------------- Wp + 10W1 = 1200g ---- p10
x = 10.25" = 0.26 m
b = 1.0" = 0.0254 m
t = 0.125" = 3.175 * 10^-3 m
using the following value to determine the load values at different beam loading values
attached below is the remaining part fo the solution