Answer:
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
Explanation:
We know that the relation between the Voltage and the current is given using the Ohm's law, which states that the voltage (V) is directly proportional to the current (I)
Mathematically,
V ∝ I
Hence,
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
Answer:
Explanation:
When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.
Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.
While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.
On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.
5 a)
Start by arranging the materials by the sonic speed and then their physical state:
- Copper (solid)
- Glass (solid)
- Wood (solid)
- Sea Water (liquid)
- Acetone (liquid)
- Alcohol (liquid)
- Helium (gas)
- Carbon dioxide (gas)
What trend do you identify from these data? Here's what I've got:

5 b)
The way microscopic particles are arranged in a substance helps distinguish between different physical states:
- Particles in a solid are held tightly in place with small separation in between; it's hard for particles in a solid to move past one another; solids therefore have shapes that persists over time.
- Particles in a gas are highly mobile- they keep moving AT ALL TIMES. There are large separations between individual particles and therefore gases tend to show no definite shape or volume.
- The arrangement of particles in a liquid is located somewhere in between that of solids and gases. The exact configuration is dependent on the nature of the liquid- for example, molecules in maple syrup are held way closer to each other than those in distilled water are.
Sound travels as a longitudinal wave. As a sound wave passes through a medium, individual particles become excited and gain energy; as they run into others they transfer their energy to the next particle; the sound wave thus propagate across the medium. With a lower average distance between individual particles this action can proceed at a greater rate in average solids than in average liquids, and in average liquids than in average gases. Hence the trend.
Answer:
Hence, option (A) is correct answer.
Explanation:
One of the fundamental pillars to solve this problem is the use of thermodynamic tables to be able to find the values of the specific volume of saturated liquid and evaporation. We will be guided by the table B.7.1 'Saturated Methane' from which we will obtain the properties of this gas at the given temperature. Later considering the isobaric process we will calculate with that volume the properties in state two. Finally we will calculate the times through the differences of the temperatures and reasons of change of heat.
Table B.7.1: Saturated Methane




Calculate the specific volume of the methane at state 1



Assume the tank is rigid, specific volume remains constant


Now from the same table we can obtain the properties,
At 


We can calculate the time taken for the methane to become a single phase

Here
Initial temperature of Methane
Warming rate
Replacing



Therefore the time taken for the methane to become a single phase is 5hr