The tension in the first and second rope are; 147 Newton and 98 Newton respectively.
Given the data in the question
- Mass of first block;

- Mass of second block,

- Tension on first rope;

- Tension on second rope;
To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity
)
For the First Rope
Total mass hanging on it; 
So Tension of the rope;

Therefore, the tension in the first rope is 147 Newton
For the Second Rope
Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

Therefore, the tension in the second rope is 98 Newton
Learn More, brainly.com/question/18288215
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
The first law states that “objects at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force”. Keeping the ice smooth will make sure there is not friction, friction would slow the puck down
B
because it will pick it up while coming down not just flowing on low land<span />
Answer:
the faster an object moves the more kinetic it has. the more mass an object has, the more kinetic energy it has.