Answer:

( 1 = sin² + cos²)
Step-by-step explanation:
Answer:
2,8
Step-by-step explanation:
Answer: y=-2x-9
Step-by-step explanation:
If ANGL is a square, then NG and LG are adjacent sides.
Adjacent sides are perpendicular. [Each angle is 90°]
The equation of line NG is
.
By comparing it to equation in slope intercept form y=mx+c ( where , m= slope , c=y-interecpt)
slope =
Let slope of LG be <em>n</em>, then
[Product of slopes of two perpendicular line =-1]

Equation of a line passes through (a,b) and have slope m is given by :-

Equation of LG :
[In intercept form]
Answer:

Step-by-step explanation:
Let points D, E and F have coordinates
and 
1. Midpoint M of segment DF has coordinates

2. Midpoint N of segment EF has coordinates

3. By the triangle midline theorem, midline MN is parallel to the side DE of the triangle DEF, then points M and N are endpoints of the midsegment for DEF that is parallel to DE.