The formula we're gonna use for this problem is written below:
ΔG°= nFE°
where
n is number of mol electrons displaced in the reaction
F is Faraday's constant = 96,500 C/mol e
E° is the standard emf
ΔG° = (2)(96,500)(1.46) = <em>281,780 Joules</em>
Answer:
v = 46.5 m/s
Explanation:
Given data:
Mass of car = 1210 kg
Momentum of car = 56250 kg m/s
Velocity of car = ?
Solution:
Formula:
p = mv
p = momentum
m = mass
v = velocity
Now we will put values in formula:
56250 kg m/s = 1210 kg × v
v = 56250 kg m/s / 1210 kg
v = 46.5 m/s
So a car having mass of 1210 kg with momentum 56250 kg m/s having 46.5 m/s velocity.
The balanced nuclear equations for the following:(a) β⁻ decay of silicon-32 is (27,14)Si -> (0,-1)beta + (27,15)P
<h3>
What is balanced nuclear equation?</h3>
A nuclear reaction is generally expressed by a nuclear equation, which has the general form, where T is the target nucleus, B is the bombarding particle, R is the residual product nucleus, and E is the ejected particle, and Ai and Zi (where I = 1, 2, 3, 4) are the mass number and atomic number, respectively. Finding a well balanced equation is critical for understanding nuclear reactions. Balanced nuclear equations provide excellent information about the energy released in nuclear reactions. Balancing the nuclear equation requires equating the total atomic number as well as the total mass number before and after the reaction using the rules of atomic number and mass number conservation in a nuclear reaction.
To learn more about nuclear equations visit:
brainly.com/question/12221598
#SPJ4
Answer:
[NaOH} = 0.4 M
Explanation:
In a reaction of neutralization, we determine the equivalence point of the titration. In this case, we have a strong base and a strong acid.
(H₂SO₄, is considered strong, but the first deprotonation is weak)
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
As we have 2 protons in the acid, we need 2 OH⁻ from the base to form 2 molecules of water.
In the equivalence point we know mmoles of base = mmoles of acid
Let's finish the excersise with the formula
25 mL . M NaOH = 28.2 mL . 0.355M
M NaOH = (28.2 mL . 0.355M) / 25 mL → 0.400
Explanation:
conduction involves the transfer of molecules due to the movement of particles