Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]
The balanced chemical reaction is expressed as follows:
<span>CuCl2 (aq) + 2AgNO3 (aq) → 2AgCl (s) + CuNO32 (aq)
To determine the </span><span>concentration of copper(II) chloride contaminant in the original groundwater sample, we use the final amount of silver chloride that was produced from the reaction and the relation of the substances from the chemical reaction. We calculate as follows:
mmol AgCl = 6.1 mg AgCl ( 1 mmol / 143.35 mg ) = 0.0426 mmol
mmol CuCl2 = </span>0.0426 mmol AgCl ( 1 mmol CuCl2 / 2 mmol AgCl ) = 0.0213 mmol CuCl2
concentration of CuCl2 in the original water sample = 0.0213 mmol CuCl2 / 200.0 mL = 1.0638 x 10^-4 mmol / mL or 1.0638 x 10^-4 mol/L