Answer:
The magnitude of acceleration is reduced.
Explanation:
Force is defined as push or pull
The force is said to be<em> balance force </em>if the force are equal in size but opposite in direction. ie the object does not move or move with constant speed.
The force are to be<em> unbalanced force </em>if the force cause change in motion. ie the object has force greater than zero and has acceleration.
According to <em>Newton second law of motion </em>, acceleration depends on force acting on the object and mass of object.
F=ma
a=
When unbalanced force act on the mass of object it reduces magnitude of acceleration without changing the direction.
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity will be expressed by the following equation:
Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:
yes it doesn't matter
Explanation:
it doesn't matter because troughs and crests are the same and either can be used
The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge C is placed which is the origin.
Let B be the point where the charge C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law, ,
=
k is the Coulomb's law constant.
On substituting the values into the above equation, we get,
Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4