The watch hand covers an angular displacement of 2π radians in 60 seconds.
ω = 2π/60
ω = 0.1 rad/s
v = ωr
v = 0.1 x 0.08
v = 8 x 10⁻³ m/s
Explanation:
Initial speed(u)= 0 m/s (Ball is dropped)
time(t)= 0.75 s
acceleration(a)= 10 m/s² (gravity)
Final speed(v)= u+at
v=0+(10)× 0.75
v=7.5 m/s
Speed is 7.5 m/s
Longitudinal waves have energy that vibrates parallel to the medium - a compression is the region of greatest density and the rarefaction the region of highest density .The rarefaction (much like the maximum amplitude in a transverse wave) has a region of lowest density, typically situated in the exact center of the region.
<em>1</em><em>.</em><em>259ms^2</em>
Explanation:
since, WORK DONE = FORCE*DISTANCE
AND, FORCE=MASS*ACCELERATION
SO, THE WORK DONE BECOMES=MASS*ACCELERATION*DISTANCE
ACCELERATION=WORK/(MASS*DISTANCE)
AND, WORK=686J
MASS=227kg
DISTANCE=2.4m
THEREFORE, ACCELERATION=686/(227*2.4)
=686/544.8
=1.259ms^2
Answer:
Power, P = 600 watts
Explanation:
It is given that,
Mass of sprinter, m = 54 kg
Speed, v = 10 m/s
Time taken, t = 3 s
We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.
Work done is equal to the change in kinetic energy of the sprinter.
P = 900 watts
So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.