Answer: 6m/s
Explanation:
Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.
After collision, the two objects will move at the same velocity (v).
Let mA and mB be the mass of the two objects
uA and uB be their velocities before collision.
v be their velocity after collision
Since the two objects has the same mass, mA= mB= m
Also since object A is at rest, its velocity = 0m/s
Velocity of object B = 12m/s
Mathematically,
mAuA + mBuB = (mA+mB )v
m(0) + m(12) = (m+m)v
0+12m = (2m)v
12m = 2mv
12 = 2v
v = 6m/s
Therefore the speed of the composite body (A B) after the collision is 6m/s
Answer:
1800J
Explanation:
Given parameters:
Weight of the book = 20N
Total distance covered = 45m + 15m + 30m = 90m
Unknown:
Total work performed on the books = ?
Solution:
To solve this problem we must understand that work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Work done = 20 x 90 = 1800J
The vesicles release neurotransmitters. These cross the synapse and are accepted by the receptors in the dendrites of the next neuron.
Explanation:
An axon, or nerve fiber, is a long slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body. Axons are in effect the primary transmission lines of the nervous system, and as bundles they help make up nerves.
When an action potential reaches the axon terminal, it depolarizes the membrane and opens voltage-gated Na+ channels. Na+ ions enter the cell, further depolarizing the presynaptic membrane.
Answer:
Work done by the machine (W) = 500 × 1.5 = 750 J
Work supplied to the machine (W) = 100 × 10 = 1000 J
Here, work supplied to the machine is input work = 1000 J
Answer:
Explanation: Decreasing in velocity