Answer:
Just one of the ones in the numerator and the one in the denominator
Step-by-step explanation:
Answer:
(-3,-4)
Step-by-step explanation:
G=11 you add all the numbers together to get the correct number
Answer:
When we have 3 numbers, like:
a, b and c.
Such that:
a < b < c.
These numbers are a Pythagorean triplet if the sum of the squares of the two smaller numbers, is equal to the square of the larger number:
a^2 + b^2 = c^2
This is equivalent to the Pythagorean Theorem, where the sum of the squares of the cathetus is equal to the hypotenuse squared.
Now that we know this, we can check if the given sets are Pythagorean triples.
1) 3, 4, 5
Here we must have that:
3^2 + 4^2 = 5^2
solving the left side we get:
3^2 + 4^2 = 9 + 16 = 25
and the right side:
5^2 = 25
Then we have the same in both sides, this means that these are Pythagorean triples.
2) 8, 15, 17
We must have that:
8^2 + 15^2 = 17^2
Solving the left side we have:
8^2 + 15^2 = 64 + 225 = 289
And in the right side we have:
17^2 = 17*17 = 289
So again, we have the same result in both sides, which means that these numbers are Pythagorean triples
Answer:
The first two tables show y as a function of x.
Step-by-step explanation:
A relation is <em>not a function</em> if the same x-value shows up more than once in the table. That will be the case for the last two tables, each of which has x=2 show up twice.