The picture is hard to see but if you still need help message me
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
Magnitude of normal force acting on the block is 7 N
Explanation:
10N = 1.02kg
Mass of the block = m = 1.02 kg
Angle of incline Θ
= 30°
Normal force acting on the block = N
From the free body diagram,
N = mgCos Θ
N = (1.02)(9.81)Cos(30)
N = 8.66 N
Rounding off to nearest whole number,
N = 7 N
Magnitude of normal force acting on the block = 7 N
Respuesta:En la astenosfera existen lentos movimientos de convección que explican la deriva continental. Además, el basalto de la astenosfera fluye por extrusión a lo largo de las dorsales oceánicas, lo cual hace que se renueve y expanda constantemente el fondo oceánico. :D
Answer:
0.0360531138247 V/m
Explanation:
= Resistivity of gold =
(General value)
I = Current = 940 mA
d = Diameter = 0.9 mm
A = Area = 
E = Electric field
Resistivity is given by

The electric field in the wire is 0.0360531138247 V/m