Answer:
So as KE becomes 4times , Momentum will increase by 2 times.
Answer:
A. False
B. False
C. True
D. True
E. True
F. True
Explanation:
A. The equation Ax=b is referred to as a matrix equation and not vector equation.
B. If the augmented matrix [ A b ] has a pivot position in every row then equation Ax=b may or may not be consistent. It is inconsistent if [A b] has a pivot in the last column b and it is consistent if the matrix A has a pivot in every row.
C. In the product of Ax also called the dot product the first entry is a sum of products. For example the the product of Ax where A has [a11 a12 a13] in the first entry of each column and the corresponding entries in x are [x1 x2 x3] then the first entry in the product is the sum of products i.e. a11x1 + a12x2 +a13x3
D. If the columns of mxn matrix A span R^m, this states that every possible vector b in R^m is a linear combination of the columns which makes the equation consistent. So the equation Ax=b has at least one solution for each b in R^m.
E. It is stated that a vector equation x1a1 + x2a2 + x3a3 + ... + xnan = b has the same solution set as that of the linear system with augmented matrix [a1 a2 ... an b]. So the solution set of linear system whose augmented matrix is [a1 a2 a3 b] is the same as solution set of Ax=b if A=[a1 a2 a3] and b can be produced by linear combination of a1 a2 a3 iff the solution of linear system corresponding to [a1 a2 a3 b] takes place.
F. It is true because lets say b is a vector in R^m which is not in the span of the columns. b cannot be obtained for some x which belongs to R^m as b = Ax. So Ax=b is inconsistent for some b in R^m and has no solution.
Answer:
d. correctly described by all the statements above.
Explanation:
Kinetic molecular theory of gases states that gas particles exhibit a perfectly elastic collision and are constantly in motion.
According to the kinetic-molecular theory, the average kinetic energy of gas particles depends on temperature.
This ultimately implies that, the average kinetic energy of gas particles is directly proportional to the absolute temperature of an ideal gas. Thus, an increase in the average kinetic energy of gas particles would cause an increase in the absolute temperature of an ideal gas.
Temperature can be defined as a measure of the degree of coldness or hotness of a physical object. It is measured with a thermometer and its units are Celsius (°C), Kelvin (K) and Fahrenheit (°F).
Generally, the temperature of a quantity of an ideal gas is;
a. a measure of the ability of an ideal gas to transfer thermal energy to another body.
b. the average kinetic energy of gas particles is directly proportional to the absolute temperature of an ideal gas
c. proportional to the internal energy of the gas.
Answer:
the answers are 1 2 and 5!