Answer:
Answer explained below
Explanation:
(a) The rays are diverging near the lens. They change the direction when they passed through the converging lens
(b) If the light rays don't bend they will move away from the optical (principal axis) as the other waves are moving.
(c) If we decrease the distance between lens and light source, most of the rays diverge and no ray converges on the screen even after passing through the lens. Here is a screenshot.
Answer:
I don't do physics , I'm sorry can't help you
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
Answer:
15.8 seconds
Explanation:
Create an extended calculation to convert all the unit to what you need.
160 km 1000 m 1 hour 1 min
----------- x ------------- x -------------- x ---------- = 44.4 m/s
1 hour 1 km 60 min 60 sec
So 160km/hr is equal to 44.4m/s
Now you can figure out how many seconds it will take to go 700 meters.
44.4 m
---------- X x sec = 700 m
1 sec
Solve for x sec
x sec = 700m / 44.4 m/s
= 15.8 seconds
Strange as it may seem, that's true. (choice 'a'.)
"Acceleration" doesn't mean "speeding up". It means ANY change in
the speed or direction of motion. So a car with the brakes applied
and slowing down, and a point on the rim of a bicycle wheel that's
turning at a constant rate, are both accelerating.