Answer:
Electrostatic repulsion, strong nuclear force
Explanation:
The nucleus consists of protons and neutrons. protons are positively charged while neutrons possess no charge.
Since protons are positively charged, they repel each other strongly (like charges repel). This strong repulsion of like charges makes the nucleus somewhat unstable leading to spontaneous fission of heavy nuclei.
However, an opposing force called nuclear attractive force tends to hold the nucleons together. This attraction occurs when two nucleons are bonded by a particle called a π meson.
Hence, the two forces that act in the nucleus to create a 'nuclear tug-of-war' are electrostatic repulsion and a strong nuclear force.
<u>Answer:</u> The density of liquid is 
<u>Explanation:</u>
We are given:
Mass of cylinder,
= 65.1 g
Mass of liquid and cylinder combined, M = 120.5 g
Mass of liquid,
= 
To calculate density of a substance, we use the equation:

We are given:
Mass of liquid = 55.4 g
Volume of liquid = 49.3 mL =
(Conversion factor:
)
Putting values in above equation, we get:

Hence, the density of liquid is 
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm