Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
A homogenous mixture is uniform and thus hard to recognize as a mixture. An example is water.
Answer:
See explanation
Explanation:
An intrinsic property is a property that is internal, that is, it characterizes the substance under study. The possession of an intrinsic property depends on the nature of the substance. An intrinsic property does not depend on amount of substance but on the nature of the substance.
Examples of intrinsic properties include; Density. Solubility, Melting Point, Freezing Point, Boiling Point, Conductivity etc.
Intrinsic properties really represent the matter that is being studied. For instance, the boiling point of water will always be 100°c. No other liquid can boil exactly at that temperature. Hence, this intrinsic property can always be used to identify an unknown liquid as water.
The students were right, studying intrinsic properties accurately represent the matter that is being studied.