If you have 1 piece divided into 50 parts and take 19 parts away, your answer in decimal form will be (.38) The answer is .38
Answer:
a) 13 m/s
b) (15 + h) m/s
c) 15 m/s
Step-by-step explanation:
if the location is
y=x²+3*x
then the average velocity from 3 to 7 is
Δy/Δx=[y(7)-y(3)]/(7-3)=[7²+3*7- (3²+3*3)]/4= 13 m/s
then the average velocity from x=6 to to x=6+h
Δy/Δx=[y(6+h)-y(6)]/(6+h-6)=[(6+h)²+3*(6+h)- (6²+3*6)]/h= (2*6*h+3*h+h²)/h=2*6+3= (15 + h) m/s
the instantaneous velocity can be found taking the limit of Δy/Δx when h→0. Then
when h→0 , limit Δy/Δx= (15 + h) m/s = 15 m/s
then v= 15 m/s
also can be found taking the derivative of y in x=6
v=dy/dx=2*x+3
for x=6
v=dy/dx=2*6+3 = 12+3=15 m/s
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
The answer is B.13.
kjjjjj