Take into account that density and relative density are given by:
Take into account that the volume associated to each of the given sustances in the table is determined by the Level Difference (because it is the change in the volume of the water of the recipient in which the substance is immersed).
The density of water in kg/m^3 is 1000 kg/m^3.
Due to the density must be given in kg/m^3, it is necessary to express the volumes of the table in m^3 and mass in kg, then, consider the following conversion factor:
1 m^3 = 1000000 ml
1 kg = 1000 g
Then, you obtain the following results:
Brass:
Cooper:
To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So
Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,
Therefore the tension force in the cable is 10290.15N
Answer:
<h3>I think this will answer your question. This is information is not mine and this rightfully belongs to <u>columbia.edu.</u></h3><h3><u /></h3>
This brightly colored fish is native to the Indo-Pacific from Australia north to southern Japan and south to Micronesia. The lionfish is usually found in coral reefs of tropical waters, hovering in caves or near crevices. Native regions as well as Savannah, Georgia; Palm Beach and Boca Raton, Florida; Long Island, New York; Bermuda and possibly Charleston. In southern Florida and off the coast of the Carolinas in early to mid 1990s.
<h3><u /></h3>
Hydrogen fuel cells is the answer
Answer:
Explanation:
The answer is C. Both options are correct