Answer:
I think you would need too time your friend and know how too divide that time by other racers to see how much faster she needs to get. I THINK.
Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm
Answer:
q = 3.87 x 10⁵ C
Explanation:
given,
Electric field, E = 8.60 x 10¹ = 86 N/C
radius of earth, R = 6371 Km = 6.371 x 10⁶ m
Coulomb constant, K = 9 x 10⁹ N · m²/C²
Charge on the earth = ?
the electric field at the point


inserting all the values

q = 3.87 x 10⁵ C
The electric charge on the earth is equal to 3.87 x 10⁵ C
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?