We will measure all angles from West, the negative x-axis and divide the journey into 3 parts:
P1 = 370y
P2 = 410cos(45)x + 410sin(45)y = 290x + 290y
P3 = 370cos(270 - 28)x + 370sin(270 - 28) = -174x - 327y
Overall displacement:
x = 290 - 174 = 116 m
y = 370 + 290 - 327 = 333 m
displacement = √(116² + 333²)
= 353 m
Direction:
tan(∅) = y/x
∅ = tan⁻¹ (333 / 116)
∅ = 70.8° from West.
<u>Answer:</u>
The height of ramp = 124.694 m
<u>Explanation:</u>
Using second equation of motion,
![s = ut + \frac{1}{2}at^2](https://tex.z-dn.net/?f=s%20%3D%20ut%20%2B%20%5Cfrac%7B1%7D%7B2%7Dat%5E2)
From the question,
u = 31 m/s; s = 156.3 m, a=0
substituting values
![156.3 = 31\times t + 0](https://tex.z-dn.net/?f=156.3%20%3D%2031%5Ctimes%20t%20%2B%200)
t = ![\frac{156.3}{31 }](https://tex.z-dn.net/?f=%5Cfrac%7B156.3%7D%7B31%20%7D)
= 5.042 s
Similary, for the case of landing
t = 5.042 s; initial velocity, u =0
acceleration = acceleration due to gravity, g = 9.81 ![m/s^2](https://tex.z-dn.net/?f=m%2Fs%5E2)
Substituting in ![h = ut + \frac{1}{2}gt^2](https://tex.z-dn.net/?f=h%20%3D%20ut%20%2B%20%5Cfrac%7B1%7D%7B2%7Dgt%5E2)
![h = 0 + \frac{1}{2} \times 9.81 \times (5.042)^2](https://tex.z-dn.net/?f=h%20%3D%200%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%209.81%20%5Ctimes%20%285.042%29%5E2)
h = 124.694 m
So height of ramp = 124.694 m
Like windmills they use the winds to generate their power.
Answer:
B convection MERRY CHRISTMAS
Explanation: