Answer:
a. Kp=1.4


b.Kp=2.0 * 10^-4


c.Kp=2.0 * 10^5


Explanation:
For the reaction
A(g)⇌2B(g)
Kp is defined as:

The conditions in the system are:
A B
initial 0 1 atm
equilibrium x 1atm-2x
At the beginning, we don’t have any A in the system, so B starts to react to produce A until the system reaches the equilibrium producing x amount of A. From the stoichiometric relationship in the reaction we get that to produce x amount of A we need to 2x amount of B so in the equilibrium we will have 1 atm – 2x of B, as it is showed in the table.
Replacing these values in the expression for Kp we get:

Working with this equation:

This last expression is quadratic expression with a=4, b=-(4+Kp) and c=1
The general expression to solve these kinds of equations is:
(equation 1)
We just take the positive values from the solution since negative partial pressures don´t make physical sense.
Kp = 1.4


With x1 we get a partial pressure of:


Since negative partial pressure don´t make physical sense x1 is not the solution for the system.
With x2 we get:


These partial pressures make sense so x2 is the solution for the equation.
We follow the same analysis for the other values of Kp.
Kp=2*10^-4
X1=0.505
X2=0.495
With x1


Not sense.
With x2


X2 is the solution for this equation.
Kp=2*10^5
X1=50001

With x1


Not sense.
With x2


X2 is the solution for this equation.
Answer:
For instance equation C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but PhC2H5 + O2 = PhOH + CO2 + H2O will; Compound states [like (s) (aq) or (g)] are not required. If you do not know what products are enter reagents only and click 'Balance'. In many cases a complete equation will be suggested.
Explanation:
Answer:
0.967mole
Explanation:
Given parameters:
Volume of NH₄Cl = 21.67L
Unknown:
Number of moles = ?
Solution:
If we assume that the volume was taken at standard temperature and pressure,
Then;
Number of moles =
Number of moles =
= 0.967mole
Answer:
Mendel's gene involved in pea color decides whether the chlorophyll in the pea will be broken down or degraded. When this gene isn't working, the chlorophyll stays around and the pea is green. So in this case the recessive trait is indeed due to a broken gene.
Explanation: