Answer:
No, because Flourine can only form 1 bond, thus backbonding is not obtainable
A galvanic cell is formed when two metals are immersed in solutions differing in concentration 1 when two different metals are immersed.
<h3>What is galvanic cell?</h3>
A galvanic cell is an electrochemical device that transforms chemically generated free energy into electrical energy. A photogalvanic cell produces photochemical species that react to produce an electrical current when connected to an external circuit.
<h3>How does galvanic cell works?</h3>
In order to create a pathway for the flow of electrons via this wire, the galvanic cell makes use of the ability to split the flow of electrons during the processes of oxidation and reduction, forcing a half-reaction and linking each with a wire.
An electrochemical device known as a galvanic cell converts chemical energy from a spontaneous redox response into electrical energy. It possesses an electrical potential of 1.1 V. The anode, which is a negative plate in galvanic cells, is where oxidation takes place. It is a positive plate where lessening takes place.
To learn more about galvanic cell visit:
brainly.com/question/13031093
#SPJ4
Answer:
2,760 grams NaCl
Explanation:
To find grams of NaCl, you need to (1) convert moles of Na to moles of NaCl (via mole-to-mole ratio from reaction) and (2) convert moles of NaCl to grams (via molar mass from periodic table). The final answer should have 3 significant figures based on the given measurement.
2 Na + Cl₂ --> 2 NaCl
Molar Mass (NaCl) = 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl) = 58.44 g/mol
47.2 moles Na 2 moles NaCl 58.44 grams
---------------------- x --------------------------- x ------------------------- =
2 moles Na 1 mole NaCl
= 2,758.368 grams NaCl
= 2,760 grams NaCl
The conclusion that would support the students prediction is B) Plant "A" grows taller than Plant "B".
If the student thinks that adding fertilizer to the plant would help it grow then answer B) would make the most sence.
Answer:
Dolphins use a method called echolocation to detect things such as obstacles and prey in the water. If a dolphin swimming in seawater at 25°C sends a 220-dB click with a frequency of 120.0 Hz, and then detects the reflection of the click exactly one-twentieth of a second later, approximately how far away is the object?