Answer:
it's a measure of how far down light can penetrate through the water column. ... Because water clarity is closely related to light penetration, it has important implications for the diversity and productivity of aquatic life that a system can support
Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L
0.115 M means that 0.115 moles of KBr are contained in a volume of 1000 ml, therefore a volume of 350 ml will have (0.115 × 0.35) = 04025 moles
From the formula of molarity moles = molarity × volume in liters
1 mole of KBr is equivalent to 119 g
Therefore, the mass = 0.04025 × 119 g = 4.79 g
I believe the answer is A the 1st one