Answer:
a.) Marginal Product (MP) = 120
b.) Average Product = 126
c.) At x = 12, the output is maximum.
d.) After 5 levels of inputs diminishing returns set in.
Step-by-step explanation:
Given that,
Q = 72x + 15x² - x³
a.)
Marginal Product is equal to
![\frac{dQ}{dx} = 72 + 30x - 3x^{2}](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdx%7D%20%3D%2072%20%2B%2030x%20-%203x%5E%7B2%7D)
At x = 8
MP = 72 + 30(8) - 3(8)²
= 72 + 240 - 192
= 120
∴ we get
Marginal Product (MP) = 120
b.)
Average Product is equals to
= ![\frac{Q}{x}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7Bx%7D)
= 72 + 15x - x²
At x = 6
Average Product = 72 + 15(6) - 6²
= 72 + 90 - 36
= 126
∴ we get
Average Product = 126
c.)
For Maximizing Q,
Put ![\frac{dQ}{dx} = 0](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdx%7D%20%3D%200)
⇒72 + 30x - 3x² = 0
⇒24 + 10x - x² = 0
⇒x² - 10x - 24 = 0
⇒x² - 12x + 2x - 24 = 0
⇒x(x - 12) + 2(x - 12) = 0
⇒(x + 2)(x - 12) = 0
⇒x = -2, 12
As items can not be negative
∴ we get
At x = 12, the output is maximum.
d.)
Now,
For Diminishing Return
![\frac{d(MP)}{dx} = \frac{d^{2}Q}{dx^{2} } < 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%28MP%29%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%5E%7B2%7DQ%7D%7Bdx%5E%7B2%7D%20%7D%20%20%20%3C%200)
⇒30 - 6x < 0
⇒-6x < -30
⇒6x > 30
⇒x > 5
∴ we get
For x > 5, the diminishing returns set in
i.e.
After 5 levels of inputs diminishing returns set in.