We have to solve this question using the stoichiometry of the reaction:
The equation of the reaction is;

According to the question;
Number of moles of CO2 released = 21.3 g/44 g/mol = 0.48 moles
From the stoichiometry of the reaction:
Since;
24 moles of CO2 released 15,026 KJ
0.48 moles of CO2 will release 0.48 * 15,026/24
= 301 KJ of heat.
brainly.com/question/6901180
Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
There are 1000 mg in 1 g
and there are 1000 g in 1 kg
Start by converting 1.34 mg to grams by dividing 1.34 mg by 1000 g = 0.00134 g
Then convert 0.00134 g to kg by dividing 0.00134 g by 1000 kg = 1.34×10^-6 kg OR 0.00000134 kg
the answer to your question is A