Answer:
V2 = 3.11 x 105 liters
Explanation:
Initial Volume, V1 = 2.16 x 105 liters
Initial Temperature, T1 = 295 K
Final Temperature, T2 = 425 K
Final Volume, V2 = ?
These quantities are related by charle's law and the equation of the law is given as;
V1 / T1 = V2 / T2
V2 = T2 * V1 / T1
V2 = 425 * 2.16 x 105 / 295
V2 = 3.11 x 105 liters
Answer:
The ATP is broken down into glucose which the cells use for energy.
We determine the limiting reactant by using the moles present in the equation and the actual moles.
According to equation, ratio of Fe₂O₃ : Al = 1 : 2
Actual moles of Fe₂O₃ = 187.3 / (56 x 2 + 16 x 3)
= 1.17
Actual moles of Al = 94.51 / 27
= 3.5
Fe₂O₃ is limiting. Fe₂O₃ required:
(moles Al)/2 = 3.5/2 = 1.75
Moles to be added = 1.75 - 1.17
= 0.58
Mass to be added = moles x Mr
= 0.58 x (56 x 2 + 16 x 3)
= 92.8 grams
<h3>
Answer:</h3>
83.33 seconds.
<h3>
Explanation:</h3>
<u>We are given;</u>
- Take off velocity as 300 km/hr
- Acceleration as 1 m/s²
We are required to calculate the take off time of the airplane.
<h3>Step 1: Convert velocity from km/hr to m/s </h3>
We are going to use the conversion factor.
The conversion factor is 3.6 km/hr per m/s
Therefore;
Velocity = 300 km/hr ÷ 3.6 km/hr per m/s
= 83.33 m/s
<h3>Step 2: Calculate the take off time</h3>
We know that;
v = u + at
where, u is the initial velocity, v the final velocity, a the acceleration and t is time.
But, initial velocity is Zero
Therefore;
83.33 m/s = 1 m/s² × t
Thus;
time = 83.33 m/s ÷ 1 m/s²
= 83.33 seconds
Therefore, the take off time is 83.33 seconds.
It was a compound, hence it needed to be separated into its individual components by chemical means.