The atoms of hydrogen that are present in 7.63 g of ammonia(NH3)
find the moles of NH3 =mass/molar mass
7.63 g/ 17 g/mol = 0.449 moles
since there is 3 atoms of H in NH3 the moles of H = 0.449 x 3 = 1.347 moles
by use of 1 mole = 6.02 x10^23 atoms
what about 1.347 moles
= 1.347 moles/1 moles x 6.02 x10^23 atoms = 8.11 x10^23 atoms of Hydrogen
Answer: sharing
Reason: They do this to gain stability. The reason they don’t actually transfer is because the difference in electronegativity values are above a certain value.
Answer:
a) ∆T=T1-T2
b) At the particle level the temperature changes are the result of the added energy causing the particles of water to move more vigorously. Either the particles of solid vibrate more vigorously about their fixed positions or the particles of liquid and gas move about their container more rapidly.
c) The state in which two substances in physical contact do not share any heat energy. The temperature of two substances in thermal equilibrium is said to be the same. Also see thermodynamics.
Explanation:
hope that helped good luck!
Answer:
No effect.
Explanation:
Hello,
In this case, considering the widely studied Le Chatelier's principle, we can realize that the factors affecting equilibrium are concentration, temperature and pressure and volume if the reaction is in gaseous phase and with non-zero change in the number of moles. In such a way, by adding a catalyst to given reaction will have no effect on the equilibrium direction.
Best regards.
Answer:
Q = 233.42 J
Explanation:
Given data:
Mass of lead = 175 g
Initial temperature = 125.0°C
Final temperature = 22.0°C
Specific heat capacity of lead = 0.01295 J/g.°C
Heat absorbed by water = ?
Solution:
Heat absorbed by water is actually the heat lost by the metal.
Thus, we will calculate the heat lost by metal.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 22.0°C - 125.0°C
ΔT = -103°C
Q = 175 g × 0.01295 J/g.°C×-103°C
Q = -233.42 J
Heat absorbed by the water is 233.42 J.