Answer:
Potential Difference = 14 V
Explanation:
We are told that when the capacitor plates are charged to a certain voltage, then we have;
ΔV = 14 volts
Now, the battery is disconnected, so here we have the potential difference between the plates to be given by the formula;
ΔV = Q/C
Now, the charge is conserved on the plates and the capacitance is constant, therefore in this case, the potential difference will remain the same.
Thus;
Potential Difference = 14 V
It is b 9.1 :) have a nice day
Answer:
the principle of conservation of energy cannot be violated.
the correct one is: The total power is equal to the sum of the powers dissipated by the resistors.
Explanation:
The power in an electric circuit is given by
P == I V
In a circuit with several components (resistors) the power dissipated is the current by the voltage in each resistance, by the principle of conservation of energy the current in each resistance is the same if the circuit is in series and the current is the same if The circuit is in parallel, but cannot be greater than the current supplied by the power source.
Therefore, the power dissipated by the entire circuit is the sum of the power dissipated by each part, since the principle of conservation of energy cannot be violated.
When reviewing the answers, the correct one is: The total power is equal to the sum of the powers dissipated by the resistors.
Answer:
no way to tell since the ocean surface is moving too violently it's not possible to determine the reflected angle
Answer:

Explanation:
The equation of the position in kinematics is given:

- x(0) is the initial position, in this it is 0
- v(0) is the initial velocity (20 m/s)
- a is the acceleration (2 m/s²)
So the equation will be:

Now, the Taylor polynomial equation is:

Using our position equation we can find f'(t)=v(t) and f''(x)=a(t). In our case a=0, so let's find each derivative.



Using the Taylor polynomial with a = 0 and take just the second order of the derivative.







Let's put t=1 so find the how far the car moves in the next second:


Therefore, the position in the next second is 21 m.
We need to know if the acceleration remains at this value to use this polynomial in the next minute, so I suggest that it would be reasonable to use this method just under this condition.
I hope it helps you!