Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
You need the Avogadro's number. I can't remember exactly the calculation.
I don't know if this is the answer you are looking for but it would be flat unless the player pushed the tuning slide in.
Answer:
D. 1:1
Explanation:
For every 1 mole of chlorine (Cl₂), there is one mole of calcium chloride (CaCl₂).
So, the mole ratio of chlorine to calcium chloride is 1:1.
Hope this helps. :)