It's difficult because the temperature is obviously maintained well if it's designated a specific heat.
I'd say b, precise, here.
If there's an error somewhere in the experiment or project, then it is consistently .... wrong. So, just 'cos you measure something precisely, it doesn't mean that you've measured it accurately. Maybe an example would be a measurement of length. If you used a metal ruler at zero degrees C, you can measure to say half a millimetre. A series of measurements of the same object would give very similar readings. But, if you used same metal ruler at, say 100 celsius (implausible) then you'd probably get a different set of readings. 'cos of the expansion of the metal ruler.
Complete question
The complete question is shown on the first and second uploaded image
Answer:∈
Answer to first question is shown on the second uploaded image.
Part B the Answer is:
The ratio
is evaluated to be 49.99
Explanation:
The explanation is shown on the third ,fourth and fifth image.
Answer:
Acceleration is the rate of change of velocity. If an object is changing its velocity, its speed, or changing its direction, then it is said to be accelerating.
Explanation:
when you change directions or speed up you are accelerating (or decelerating) and when you change directions or speed its called velocity.