The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
The moles of oxygen that are needed to produce 13.7 moles of carbon dioxide is 21.17 moles of Oxygen
<u><em>calculation</em></u>
2 C₆H₁₂O + 17 O₂ → 12 CO₂ +12 H₂O
The moles of O₂ is determined using the mole ratio
that is for given equation above O₂ : Co₂ is 17 :12
therefore the moles of O ₂= 13.7 moles x 17/12 =21.17 moles
The decomposition reaction for hydrogen peroxide is given below:
2
→ 2
O + 
This is a decomposition reaction.
Reactions in which a reactant breaks into two or more products are known as Decomposition reactions.
AB → A + B
here, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction
The decomposition reaction of decomposing hydrogen peroxide is exothermic. When the hydrogen peroxide undergoes a decomposition reaction, heat is also released along with water and oxygen.
Hence the reaction for decomposing hydrogen peroxide is :
2
→ 2
O + 
If you need to learn more about Decomposition reaction, click here
brainly.com/question/16987748?
#SPJ4