Gases take the shape of their container. When you have a large container, the spaces between molecules (particles) can be further apart than if they were close together. In small containers, the particles are forced to be closer together, or compressed.
Think of it like a pep rally in a gym v.s. a classroom. In the gym, everyone has a bit of wiggle room. With the same number of people in a classroom, everyone would need to be packed in there. This can also explain why a smaller pot over boils from steam before a larger one does, even if the amount of water is the same.
This is a combination reaction. Look at the 2 elements on left and a compound on the right.
Some hydrocarbons are regarded as unsaturated because they contain double or triple bonds between adjacent carbon atoms.
<h3>What are hydrocarbons?</h3>
Hydrocarbons are any organic compounds that contain hydrogen and carbon in its structure.
Hydrocarbons can be grouped into the following based on whether they contain single or double bonds:
- Saturated hydrocarbons - contain only single bonds e.g. alkanes
- Unsaturated hydrocarbons - contain double and triple bonds e.g. alkenes
Therefore, it can be said that some hydrocarbons are regarded as unsaturated because they contain double or triple bonds between adjacent carbon atoms.
Learn more about hydrocarbons at: brainly.com/question/17578846
There are a number of
ways to express concentration of a solution. This includes molarity. Molarity
is expressed as the number of moles of solute per volume of the solution. The
concentration of the solution is calculated as follows:
<span> </span><span>Molarity = 15.5 g NaOH (1 mol NaOH / 40 g NaOH) / .250 L
solution</span>
<span>Molarity = 1.55 M</span>