Given that the equipment is stationary, we should remove particles (such as food and soil) from around the equipment.
This step ensures that large particles are removed and do not hinder the remaining process of cleaning. After doing so, the next step is to remove the removable parts of the machinery. After this has been done, the cleaning steps may be undertaken.
Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 
Gamma rays have the highest penetrating power so it can only be stopped by thick layers of dense metal. :)
Answer:
the process of carrying light
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? (
for HF is
.)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF = 

Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)


Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
![[H^+]=x=0.01346 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.01346%20M)
The pH of the solution is ;
![pH=-\log[H^+]=-\log[0.01346 M]=1.87](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B0.01346%20M%5D%3D1.87)
The pH of an 0.280 M HF solution is 1.87.