The knowledge of plate tectonics help people living in areas prone to earthquakes and volcanic eruptions can help by knowing the chances of the earthquake or volcanic eruption
The solution that conducts electricity and has a pH value of 7 would most likely be a neutral solution. Water is among the best examples of a neutral solution. When the pH of a solution is considered to be lesser than 7, it is an acid, while if the pH is greater than 7, it is considered to be a basic solution.
Answer:
see explanation below
Explanation:
First to all, this is a redox reaction, and the reaction taking place is the following:
2KMnO4 + 3H2SO4 + 5H2O2 -----> 2MnSO4 + K2SO4 + 8H2O + 5O2
According to this reaction, we can see that the mole ratio between the peroxide and the permangante is 5:2. Therefore, if the titration required 21.3 mL to reach the equivalence point, then, the moles would be:
MhVh = MpVp
h would be the hydrogen peroxide, and p the permanganate.
But like it was stated before, the mole ratio is 5:2 so:
5MhVh = 2MpVp
Replacing moles:
5nh = 2MpVp
Now, we just have to replace the given data:
nh = 2MpVp/5
nh = 2 * 1.68 * 0.0213 / 5
nh = 0.0143 moles
Now to get the mass, we just need the molecular mass of the peroxide:
MM = 2*1 + 2*16 = 34 g/mol
Finally the mass:
m = 0.0143 * 34
m = 0.4862 g
Answer: The mass of lead deposited on the cathode of the battery is 1.523 g.
Explanation:
Given: Current = 62.0 A
Time = 23.0 sec
Formula used to calculate charge is as follows.

where,
Q = charge
I = current
t = time
Substitute the values into above formula as follows.

It is known that 1 mole of a substance tends to deposit a charge of 96500 C. Therefore, number of moles obtained by 1426 C of charge is as follows.

The oxidation state of Pb in
is 2. So, moles deposited by Pb is as follows.

It is known that molar mass of lead (Pb) is 207.2 g/mol. Now, mass of lead is calculated as follows.

Thus, we can conclude that the mass of lead deposited on the cathode of the battery is 1.523 g.