By considering the reaction equation is:
5Br(aq)+BrO3(aq)+6H(aq)= 3Br2(aq)+3H2O(l)
when the average rate of consumption of Br = 1.86x10^-4 m/s
So from the reaction equation
5Br → 3Br2 when we measure the average rate of formation (X) during the same interval So,
∴ 1.86x10^-4/5 = X / 3
∴X = 1.1 x 10^-4 m/s
∴the average rate of formation of Br2 = 1.1x10^-4 m/s
Answer:
The empirical formula = molecular formula = C13H18O2
Explanation:
in 100% compound we have 75.6 % Carbon ( Molar mass = 12g/mole), 8.80% hydrogen ( Molar mass = 1.01 g/mole) and 15.5% Oxygen (Molar mass = 16.01 g/mole).
Carbon: 75.6g / 12 = 6.29
Hydrogen: 8.80/ 1 = 8.80
Oxygen: 15.5/ 16 = 0.97
⇒0.97 is the smallest so we divide everything through by 0.97
C: 6.29 / 0.97 = 6.48 ≈ 6.5
H: 8.80 /0.97 = 9
O: 0.97 / 0.97 = 1
To get rid of decimals, we multiply by 2
C: 6.5 x 2 = 13
H: 9 x 2 = 18
O: 1 x 2 = 2
The empirical formula = C13H18O2
13x 12g/mol + 18x1g/mol + 2x 16g/mol = 156 + 18 + 32 = 206g/mol which is the molar mass of ibuprofen
The empirical formula = molecular formula = C13H18O2
Explanation:
Mutations on DNA create genetic variation and diversity on which natural selection acts upon. Mutation can be advantageous, disadvantageous or neutral. Those mutations that confer advantage are preserved in the population while those that are DISadvantageous are weeded out. This occurs because advantageous traits that give a particular advantage to individuals in the environment, however slightest, give them an increased chance of survival and passing their genes to subsequent generations.
An example is mutation that causes sickle cell-shaped blood cells. Individuals with sickle cell blood are less likely to contract malaria. Therefore in an environment where malaria is endemic, the population will have a higher allele frequency for sickle cell alleles that populations in non-endemic areas.
Learn More:
For more on mutations check out;
brainly.com/question/11938701
brainly.com/question/13612138
#LearnWithBrainly
Answer:
the time required for one half of a sample of a radioisotope to decay