Answer:
When the volume of product increases.
When the weight of the product decreases.
Option (a) and (d) are correct.
Explanation:
The overall density of the product can be decreased:
a. Increase the volume of the product (and keep the material same)
d. Decrease the weight of the product ( and keep the same material ).
Density is calculated as the ratio of mass to the volume.
Density is inversely related to volume and directly related to mass.
So, when the mass of the product is increased then the density will increase keeping the material same. Density will also increase when the volume of the product decreased.
False
A heliocentric is when the model is
representing the sun as the center
A geocentric says the earth is at the center of the universe
Answer:
molarity of diluted solution = 1.25 M
Explanation:
Using,
C1V1 (Stock solution) = C2V2 (dilute solution)
given that
C1 = 2.50M
V1 = 250ML
C2 = ?
V2 = 500ML
2.50 M x 250 mL = C2 x 500 mL
C2 = (2.50 M x 250 mL) / 500 mL
C2 = 1.25 M
Hence, molarity of diluted solution = 1.25 M
Explanation:
1. Sedimentation and decantation cannot be used for all types of mixtures.
Decantation is a separation technique in which is used to separate immiscible liquids or mixtures containing liquid and solids within them.
In decantation, gravity is used to bring the denser materials to settle at the bottom.
For homogenous mixtures, it is not possible to use decantation. A solution of sugar and water will not decant.
2. Yes, mass of an object reduces the settling time of such object in a mixture.
The higher the mass, the faster the rate of settling. Also, as we know, mass is directly proportional to density. A body with a high density will settle faster in solution.
n = 1.5atm (15L) / .0821 (280k) = .98 mol NaCl
NaCl = 22.99g Na + 35.45g Cl = 58.44g NaCl
58.44g NaCl x .98 mol NaCl = 57.27g NaCl
Explanation:
hope you get it right :)