To declare an image is real you would call it “authentic”
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer: D.) electromagnetic induction
Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.
In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.
The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:
E = - N (dΦ / dt)
Where E = electromotive force in voltage
N = number of loop in conductor
dΦ = change in magnetic Flux
dt = change in time
It's velocity is not constant as direction is changing.
We know, velocity is speed with direction, so if direction is changing, velocity can't be constant, doesn't matter that speed is constant.
Hope this helps!
Answer:
A. The electric field points to the left because the force on a negative charge is opposite to the direction of the field.
Explanation:
The electric force exerted on a charge by an electric field is given by:
where
F is the force
q is the charge
E is the electric field
We see that if the charge is negative, q contains a negative sign, so the force F and the electric field E will have opposite signs (which means they have opposite directions). This is due to the fact that the direction of the lines of an electric field shows the direction of the electric force experienced by a positive charge in that electric field: therefore, a negative charge will experience a force into opposite direction.