Answer:
Density of the fuel is 727.3 kilograms per cubic meter.
Specific weight of the fuel is 7127.3 Newtons per cubic meter.
Specific gravity of the fuel is 0,727.
Explanation:
In order to use SI units, we have to convert liters to cubic meters. Knowing that a liter is a cubic decimeter and a cubic decimeter is
cubic meters, we know that the tank has 0,055 cubic meters of fuel (because it is full).
Now that we have things in SI units, we calculate density:

Knowing the mass per unit of volume, we can calculate weight per unit of volume thanks to Newton's second law (mass times acceleration, g in this case, equals force (weight)), i.e. specific weight:

With density we can also calculate how dense the fuel is related to a reference (water), i.e. specific gravity. SG is a dimensionless number that tell us how much denser (SG>1) or lighter per unit of volume (SG<1) a substance is than water. We use water as a reference because it is one of the most used substances in our life, and it is a standard density (1000 kg per cubic meter at 4°C and 1 atm).

Ok so the formula is d=vi(t)+½at² and when you substitute it you should get 172.5meters
Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.
- The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>
Reasons:
The energy given to the block by the spring = 
According to the principle of conservation of energy, we have;
On a flat plane, energy given to the block =
= kinetic energy of
block = 
Therefore;
0.5·k·x² = 0.5·m·v²
Which gives;
x² ∝ v²
x ∝ v
On a plane inclined at an angle θ, we have;
The energy of the spring = 
- The force of the weight of the block on the string,

The energy given to the block =
= The kinetic energy of block as it leaves the spring = 
Which gives;

Which is of the form;
a·x² - b = c·v²
a·x² + c·v² = b
Where;
a, b, and <em>c</em> are constants
The graph of the equation a·x² + c·v² = b is an ellipse
Therefore;
- As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.
<em>Please find attached a drawing related to the question obtained from a similar question online</em>
<em>The possible question options are;</em>
- <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
- <em>The relationship is no longer linear and v will be more for the same value of x</em>
- <em>The relationship is still linear, with lesser value of v</em>
- <em>The relationship is still linear, with higher value of v</em>
- <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>
<em />
Learn more here:
brainly.com/question/9134528