Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.
Answer:
6.43 moles of NF₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of nitrogen trifluoride (NF₃) produced by the reaction of 9.65 moles of Fluorine gas (F₂). This can be obtained as follow:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, 9.65 moles of F₂ will react to to produce = (9.65 × 2)/3 = 6.43 moles of NF₃.
Thus, 6.43 moles of NF₃ were obtained from the reaction.
Boyle’s = increase as volume decreases
Charles = increases and pressure increases
Gay-lussacs = increases as pressure increases
Answer:
Oxygen
Explanation:
I'm not completely sure about the explosion part but I know oxygen fuels fire.