The way you want to find the percent composition would be by breaking down the problem like so:
K= atomic mass of K which is 39.098
Mn = atomic mass of Mn which is 54.938
O= atomic mass of o which is 15.999
Then you want to add 39.098+ 54.938+ 15.999 and you get 110.035 which is the molar mass for KMnO
Then you want to take each molar mass and then divide it 110.035 and multiply by 100
Ex. K = 39.098/ 110.035 and the multiply what you get by a 100
You do this for the other elements as well good luck!
Answer:One mole of HBr has 6.02 x 1
0
23
molecules of HBr.
1 mole of HBr = 6.02 x 1
0
23
molecules of HBr.-----(a)
X mole of HBr has 1.21 x
10
24
molecules of HBr.
X mole of HBr = 1.21 x
10
24
molecules of HBr------(b)
Taking ratio of (a) and (b)
X / 1 = 1.21 x
10
24
/ 6.02 x 1
0
23
X= 2.009 moles.
Explanation:
The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
<h2>Nuclear Fission and Nuclear Fusion - Option C</h2>
Nuclear fission and nuclear fusion both of these processes can provide energy. Nuclear fission is the process in which heavy nucleus splits into smaller parts. When they split into smaller particles then it releases energy.
On the other hand, nuclear fusion is the process in which small particles fuse together to form a heavy nucleus. With the formation of heavy nucleus, it also provides energy.
Therefore, both these processes release or provide energy.
20 mol of NH, can be produce from 30 mol o H2