Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
Answer:
The unbalanced force that caused the ball to stop was friction
Explanation:
As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.
In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.
False’ because it is a force that makes a body follow a curved path
Answer:
second one is correct that is right