<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
The number<span> of protons in the nucleus of an </span>atom is equal to <span>the </span><span>atomic number of an element. You can also find it by subtracting the number of neutrons from the atomic mass. Atomic Number = Atomic Mass - No. of Neutrons.</span>
Answer:
1.6 L
Explanation:
Using Charle's law
Given ,
V₁ = 1.5 L
V₂ = ?
T₁ = 12 °C
T₂ = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (12 + 273.15) K = 285.15 K
T₂ = (32 + 273.15) K = 305.15 K
Using above equation as:

New volume = 1.6 L
If the number of rats decrease, snakes would look for another prey.