<u>Given:</u>
Mass of Ag = 1.67 g
Mass of Cl = 2.21 g
Heat evolved = 1.96 kJ
<u>To determine:</u>
The enthalpy of formation of AgCl(s)
<u>Explanation:</u>
The reaction is:
2Ag(s) + Cl2(g) → 2AgCl(s)
Calculate the moles of Ag and Cl from the given masses
Atomic mass of Ag = 108 g/mol
# moles of Ag = 1.67/108 = 0.0155 moles
Atomic mass of Cl = 35 g/mol
# moles of Cl = 2.21/35 = 0.0631 moles
Since moles of Ag << moles of Cl, silver is the limiting reagent.
Based on reaction stoichiometry: # moles of AgCl formed = 0.0155 moles
Enthalpy of formation of AgCl = 1.96 kJ/0.0155 moles = 126.5 kJ/mol
Ans: Formation enthalpy = 126.5 kJ/mol
Answer:
44.8 L
Explanation:
Ideal Gas Equation -
i.e.,
PV = nRT
where,
P = pressure
V = volume
n = moles
R = universal gas constant
T = temperature
Using the information given in the question, Volume of the gas can be calculated -
P = 101.3 kPa
V = ?
n = 2.00 moles
R = 8.31
T = 0 degree C = 273.15 K
Using the above data, and putting the data in the respective formula -
PV = nRT
101.3 kPa * V = 2.00 moles * 8.31 * 273.15 K
V = 44.8 L
Hence, the volume of the given gas = 44.8 L
Yahoo has the answer to that question. because i looked it up on yahoo..
Answer:
plants take carbon dioxide out of the atmosphere and use the energy from sunlight to combine the carbon dioxide and water to form sugar and oxygen