Answer:
8.6 m/s
Explanation:
We can find the final velocity of the dog by using the following SUVAT equation:

where
u is the initial velocity
a is the acceleration
d is the distance covered
For the dog in the problem, we have
u = 1.5 m/s

And the distance covered is
d = 3.0 m
Therefore, we can re-arrange the equation to find the final velocity, v:

As the greater force of tension (by 81N) is exerted by the team on the right the rope will move to the right.
The best conclusion that can be drawn is that D) A current does not flow in the wire
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:

where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:

2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
maybeeeeeeeee launcherrr im not sureee hehe