Answer:
The first statement is false, the Sun has a stronger gravitational pull.
:
Answer:
Explanation:
1 ha = 10⁴ m²
1375 ha = 1375 x 10⁴ m² = 13.75 x 10⁶ m²
In flow in a month = .5 x 10⁶ x 30 m³ = 15 x 10⁶ m³
Net inflow after all loss = 18.5 - 9.5 - 2.5 cm = 6.5 cm = .065 m
Net inflow in volume = 13.75 x 10⁶ x .065 m³= .89375 x 10⁶ m³
Let Q be the withdrawal in m³
Q - 15 x 10⁶ - .89375 x 10⁶ = 13.75 x 10⁶ x .75 = 10.3125 x 10⁶
Q = 26.20 x 10⁶ m³
rate of withdrawal per second
= 26.20 x 10⁶ / 30 x 24 x 60 x 60
= 26.20 x 10⁶ / 2.592 x 10⁶
= 10.11 m³ / s
It stands for Unified Computing System
I hope I helped :3
(a) 
The moment of inertia of a uniform-density disk is given by

where
M is the mass of the disk
R is its radius
In this problem,
M = 16 kg is the mass of the disk
R = 0.19 m is the radius
Substituting into the equation, we find

(b) 142.5 J
The rotational kinetic energy of the disk is given by

where
I is the moment of inertia
is the angular velocity
We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

And so, the rotational kinetic energy is

(c) 
The rotational angular momentum of the disk is given by

where
I is the moment of inertia
is the angular velocity
Substituting the values found in the previous parts of the problem, we find
